SYNTHESIS OF 9-OXAPROSTAGLANDINS

Isidoros Vlattas* and Laurence DellaVecchia Research Department, Pharmaceuticals Division CIBA-GEIGY Corporation, Summit, New Jersey 07901

(Received in USA 11 September 1974; received in UK for publication 5 November 1974)

We have recently described the synthesis of 9-desoxy-9-thiaprostaglandin- E_1^4 . In this paper we wish to report an alternative synthetic method for the preparation of prostaglandin analogs in which the C₉ is replaced by a heteroatom. The synthetic scheme² is illustrated in the following preparation of 9-desoxy-9-oxaprostaglandin- E_1^3 (14)

Reaction of 7-cyanoheptanal⁴($\frac{1}{12}$) with sodium triethyl phosphonoacetate gave the ethyl 9-cyano-2-nonenoate($\frac{2}{2}$) (85%; bp. 143-45°, 0.2 mm) which was converted to the tetrahydrofuranone $\frac{3}{2}$ (55%; $v_{max}^{CHCl_9}$ 2255, 1775, 1725 cm⁻¹) by reaction^{6+7a,b} with ethyl sodium glycolate. Reduction of $\frac{3}{2}$ (NaBH₄/ethanol/0°) gave a mixture of two epimeric alcohols $\frac{4^{\circ}}{2}$ (85%; evaporative dist. b.p. 170°; v_{max}^{film} 3540, 2245, 1725, 1706 cm⁻¹) which were subsequently converted (dihydropyrane/picric acid/ CH₂Cl₂) to the tetrahydropyranyl ether $\frac{5}{2}$ ($v_{max}^{CHCl_9}$ 2245, 1725, cm⁻¹). Reduction of the ester group in $\frac{5}{2}$ (LAH/THF/-20°) and oxidation (CrO₃/pyridine)^o of the resulting alcohol $\frac{6}{2}$ (80%; v_{max}^{film} 3400, 2245 cm⁻¹) gave the aldehyde $\frac{7}{2}$ (75%; $v_{max}^{CHCl_9}$ 2735, 2247, 1721 cm⁻¹). Wittig reaction of $\frac{7}{2}$ with 1-tributylphosphoranylidene-2-heptanone¹⁰ gave the C₉-epimeric enones $\frac{8}{2}$ and $\frac{9}{2}$ which were separated by prep. tlc (silica gel, EtOAc/CH₂Cl₂, 1:4, 35%; $R_{f_9}=0.55$; v_{max}^{film} 2245, 1692, 1670, 1625 cm⁻¹: 20%, $R_{f_9}=0.38$; v_{max}^{film} 2240, 1685, 1662, 1620 cm⁻¹). The stereochemical assignments are based on the amr spectra¹ of the alcohols 10 (nmr (CDCl₃) δ 6.7 (1H, 2d, CH=CHCO, J=16), 6.2 (1H, d, CH=CHCO, J=16)], btained by hydrolysis (AcOH/H₂O) of $\frac{8}{8}$ and $\frac{9}{2}$ respectively. Reduction of the C₁₅-carbonyl in <u>8</u> (NaBH₄/ethanol) followed by hydrolysis (CH₅OH/p-TsOH) of the tetrahydropyranyl group gave a mixture of the C₁₅-epimeric alcohols which were separated by prep.tlc to give the polar isomer <u>12</u>(silica gel, EtOAc/CH₂Cl₂, 4:1, R_f=0.4; $v_{max}^{CHCl_5}$ 3610, 3440, 2245 cm⁻¹) and the less polar <u>13</u> (R_f=0.53). Hydrolysis of <u>12</u> (KOH/CH₅OH/120°) gave the dl-9-desoxy-9-oxaprostaglandin-E₁(<u>14</u>) (40% from <u>8</u>; mp. 51-53°; $v_{max}^{CHCl_5}$ 3600, 3400, 1700 cm⁻¹).

Acknowledgment

The invaluable advice and encouragement of Drs. H. Gschwend and N. Finch are gratefully acknowledged. We also wish to thank Mr. L. Dorfman and his staff for preparative thin-layer chromatographies, microanalyses and spectra.

11 X=H Y=OH

4457

References

- 1. I. Vlattas and L. DellaVecchia, Tetrahedron Letters, in press.
- 2. The synthetic scheme was also used in an alternative method of preparation of 9-thiaprostaglandins, I. Vlattas and L. DellaVecchia, submitted for publication.
- The synthesis of a 9,11-bis-oxaprostaglandin has been described recently; I. T. Harrison and V. R. Fletcher, ibid., 2729 (1974).
- 4. M. Ohno, N. Naruse, I. Terasawa, Organic Synthesis, 49, 27 (1969).
- 5. Satisfactory microanalyses and nmr spectra were obtained for all compounds.
- 6. M. A. Gianturco, P. Friedel and A. S. Giammarino, Tetrahedron, 20, 1763 (1964.
- 7. This reaction was also used in the synthesis of ll-oxaprostaglandin analogs:
 a) I. T. Harrison, V. R. Fletcher and J. H. Fried, Tetrahedron Letters, 2733 (1974).
 b) I. Vlattas and A. Ong Lee, <u>ibid.</u>, recently submitted for publication.
- The more stable trans relationship is assumed between the carboethoxy group and the side chain.
- 9. J. C. Collins, W. W. Hess and F. J. Frank, *ibid.*, 3363 (1968).
- 10. N. Finch, L. DellaVecchia, J. J. Fitt, R. Stephani and I. Vlattas, J.Org. Chem. 38, 4412 (1973).